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Preliminaries

Mimic joints are designed to maintain a linear relationship between the posi-
tions of two degrees of freedom of an articulation instance. The two degrees of
freedom, henceforth labelled A and B, may be in any sub-tree of the articulation.

With qA(t) and qB(t) denoting the positions of the two degrees of freedom
and q̇A(t) and q̇B(t) denoting the speeds of the two degrees of freedom we may
introduce the position s(t) and velocity v(t) of a mimic joint:

s(t) = {qA(t), qB(t)} (1)

v(t) = {q̇A(t), q̇B(t)} (2)

The linear constraint C(t) coupling the two positions qA(t) and qB(t) has
the form:

C(t) = qA(t) +G · qB(t) + γ = 0 (3)

with G playing the role of a gearing ratio and γ playing the role of a constant
offset between the two positions.

Constrained Dynamics

The constraint described in Equation (3) will be maintained provided that

Ċ(t) = dC(t)
dt = 0. Differentiating Equation (3) with respect to time re-expresses

the mimic joint in terms of the speeds of the degrees of freedom of the mimic
joint:

q̇A(t) +G · q̇B(t) = 0 (4)

In practice, it is not possible to ensure that the constraint is resolved exactly.
Indeed, it is typical for errors to accumulate due to time discretization and
rounding error. There is also the possibility that the joints of the articulation
will be initially configured in a way that does not satisfy the mimic joint con-
straint. To avoid drift propagation and accumulation it is necessary to amend
Equation (4) so that v(t) accounts for the velocity required to counteract at
least some of the error:

q̇A(t) +G · q̇B(t) +
erp · C(t)

∆t
= 0 (5)
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where erp is a constant Baumgarte multiplier to correct a fraction of the er-
ror that might be present at time t and ∆t is the timestep of the simulation.
Increasing erp will more aggressively resolve the accumulated error but comes
with the risk of adding energy to the system because it necessarily overshoots
the ideal velocity that would occur with zero error.

The goal now is to compute impulses that may be applied to the degrees of
freedom A and B such that Equation (5) is satisfied.

Test Impulses

The Featherstone formulation allows link impulses to be propagated inwards
from link to root and then the subsequent changes in link spatial velocity to
be propagated outwards from root to link. We extend this idea to be able to
also propagate impulses applied to individual degrees of freedom, which will be
analogous to joint actuation.

Consider a unit test impulse applied to degrees of freedom A and B. A test
impulse applied to A will change q̇A(t) but may also change q̇B(t). A test
impulse applied to B will likewise have an impact on q̇B(t) and may also have
an impact q̇A(t).

[Note: The effect of a test impulse is described in[1] and is already a feature
of PhysX articulations. The difference here is that we have some extra book-
keeping to do to compute changes to mimic joint speed.]

We define rij to be the effect of a test unit impulse applied to degree of
freedom j on the speed of degree of freedom i. Continuing with this notation,
we may compute rAA, rAB , rBB , rBA. It is worth noting that rAB and rBA will
be 0 if the shortest path from A to B crosses a fixed root link.

Mimic Joint Impulse Computation

Equation (5) may be recast in a familiar form:

J · v(t) + b = 0 (6)

with the Jacobian J as follows:

J =
∂C(t)

∂s(t)
= {1, G} (7)

and the bias velocity b having the form:

b =
erp · C(t)

∆t
(8)

We may also express v(t) as the result of a constraint force FC = {FA, FB}T
(stacked forces on degrees of freedom A and B, respectively) applied at t− dt
to the velocity state v(t− dt):

v(t) = v(t− dt) + dt ·M−1 · FC (9)
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where M−1

M−1 =

[
rAA rAB

rBA rBB

]
(10)

The goal is to compute a constraint force FC that performs no work. A con-
straint force that performs no work will have the following form:

FC = JT · f (11)

[Proof: The work of the constraint force is FC
T · {v(t)− v(t− dt)} · dt. Assume

the nominal case of no prior constraint violation (C(t− dt) = 0), then substi-
tute Equations (6) and (11) into the expression for the work.]

Substituting Equation (11) into (9), projecting the equation into constraint-
space by pre-multiplying with J , and using (5) reveals the following relation-
ship:

dt · f = −b+ J · v(t− dt)

J ·M−1 · JT
(12)

We seek the impulse dt ·JT ·f . The impulse IA applied to degree of freedom
A is therefore:

IA = dt · f (13)

and the impulse IB applied to degree of freedom B is

IB = dt · f ·G (14)

For completeness it is worth expanding J ·M−1 · JT :

J ·M−1 · JT = {rAA +G · (rAB + rBA) +G2 · rBB} (15)

It is straightforward to compute and cache the reciprocal.

1

J ·M−1 · JT
=

1

rAA +G · (rAB + rBA) +G2 · rBB
(16)

PGS and TGS Implementation

The constraint impulses described in Equations (13) and (14) guarantee to sat-
isfy the mimic joint in the absence of any other constraints or contacts that
impact v(t). In practice, however, it is not sufficient to resolve a constraint just
once per simulation step because a typical use case is multiple constraints that
compete with each other. The solution is to perform multiple passes over the
list of all constraints. This observation leads to a generalisation of the recipe
for computing and applying mimic joint constraint forces.

dt · f = − bn + J · vn
J ·M−1 · JT

(17)

with bn denoting the bias velocity recorded at the nth solver iteration and vn
denoting the velocity of the mimic joint as recorded at the nth solver iteration.
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When the PGS solver is engaged both qA and qB remain constant throughout
all solver iterations of the same simulation step. As a consequence, the bias
velocity bn and J ·M−1 · JT will also remain constant. The only variable that
may change from iteration to iteration is vn.

The TGS solver, on the other hand, purposefully updates qA and qB at the
end of each solver iteration. As a consequence, bn requires an update during
each solver iteration. The impulse responses rAA, rAB , rBB , rBA and the de-
nominator J ·M−1 ·JT ought to be similarly updated at the start of each solver
iteration. To save computation, however, the impulse responses and the denom-
inator are assumed to be constant during the progress of the TGS solver. This
approximation means that Equation (17) may be applied without modification
to both TGS and PGS.

Extension To N Joints

The techniques outlined in this document may be readily extended to mimic
joints that linearly couple multiple degrees of freedom:

C(t) = q0 +G1 · q1 +G2 · q2 + .....GN−1 · qN−1 + γ (18)

One key difference now is that the inverse mass matrix M−1 will be a square
matrix of rank N instead of a square matrix of rank 2. Similarly, J will take the
form {1, G1, G2.....GN−1} and the impulse to apply to the ith degree of freedom
will be dt · f ·Gi.
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